Дизъюнктивная нормальная форма

Дизъюнкти́вная норма́льная фо́рма (ДНФ) в булевой логикенормальная форма, в которой булева формула имеет вид дизъюнкции конъюнкций литералов. Любая булева формула может быть приведена к ДНФ.[1] Для этого можно использовать закон двойного отрицания, закон де Моргана, закон дистрибутивности. Дизъюнктивная нормальная форма удобна для автоматического доказательства теорем.

Примеры

Формулы в ДНФ:

Формулы не в ДНФ:

Но последние две формулы эквивалентны следующим формулам в ДНФ:

Построение ДНФ

Алгоритм построения ДНФ

1) Избавиться от всех логических операций, содержащихся в формуле, заменив их основными: конъюнкцией, дизъюнкцией, отрицанием. Это можно сделать, используя равносильные формулы:

2) Заменить знак отрицания, относящийся ко всему выражению, знаками отрицания, относящимися к отдельным переменным высказываниям на основании формул:

3) Избавиться от знаков двойного отрицания.

4) Применить, если нужно, к операциям конъюнкции и дизъюнкции свойства дистрибутивности и формулы поглощения.

Пример построения ДНФ

Приведем к ДНФ формулу

Выразим логическую операцию → через

В полученной формуле перенесем отрицание к переменным и сократим двойные отрицания:

Используя закон дистрибутивности, получаем:

Используя идемпотентность конъюкции, получаем ДНФ:

k-дизъюнктивная нормальная форма

k-дизъюнктивной нормальной формой называют дизъюнктивную нормальную форму, в которой каждая конъюнкция содержит ровно k литералов.

Например, следующая формула записана в 2-ДНФ:

Переход от ДНФ к СДНФ

Если в какой-то простой конъюнкции недостаёт переменной, например, Z, вставляем в неё выражение

,

после чего раскрываем скобки (при этом повторяющиеся дизъюнктные слагаемые не пишем, так как по закону идемпотентности). Например:

Таким образом, из ДНФ получили СДНФ.

Формальная грамматика, описывающая ДНФ

Следующая формальная грамматика описывает все формулы, приведенные к ДНФ:

<ДНФ> → <конъюнкт>
<ДНФ> → <ДНФ> ∨ <конъюнкт>
<конъюнкт> → <литерал>
<конъюнкт> → (<конъюнкт> ∧ <литерал>)
<литерал> → <терм>
<литерал> → ¬<терм>

где <терм> обозначает произвольную булеву переменную.

См. также

Примечания

  1. Поздняков С.Н., Рыбин С.В. Дискретная математика. — С. 303.

Литература

  • Ю.И. Галушкина, А.Н. Марьямов: Конспект лекций по дискретной математике - 2-е изд., испр. - М.: Айрис-пресс, 2008. - 176 с. - (Высшее образование).

Ссылки



Что такое monamir.ru Monamir.ru является одним из мощнейших информационным ресурсом в рунете. Он открыт для любого пользователя. Наш сайт - это библиотека, которая является общественной. Любой посетитель сможет найти необходимую для себя информацию.

Основа этой страницы находится в Вики. Текст доступен по лицензии CC BY-SA 3.0 Unported License.

Wikipedia® — зарегистрированный товарный знак организации Wikimedia Foundation, Inc. monamir.ru является независимой компанией и не аффилирована с Фондом Викимедиа (Wikimedia Foundation).

E-mail: admin@monamir.ru
Сайт Monamir.ru является НЕофициальным.