Ехиднаэдр | |||||||
---|---|---|---|---|---|---|---|
![]() | |||||||
Группа симметрии | Икосаэдрическая (Ih) | ||||||
Тип | Звёздчатая форма икосаэдра | ||||||
Обозначения | Дю Валь: H Веннинджер: W42 | ||||||
Элементы (в форме звёздчатого многогранника) |
Г = 20, Р = 90 В = 60 (χ = −10) | ||||||
Элементы (в форме созвездия икосаэдра) |
Г = 180, Р = 270 В = 92 (χ = 2) | ||||||
Свойства (как звёздчатого многогранника) |
Вершино-транзитивный, гране-транзитивный | ||||||
|
Ехидна́эдр (англ. echidnahedron) — последняя звёздчатая форма икосаэдра[1][2], также называют полной или завершающей формой икосаэдра, так как она включает в себя все ячейки звёздчатой диаграммы[en] икосаэдра.
Впервые ехиднаэдр был описан Максом Брюкнером в 1900 году. Название ехиднаэдру дал Эндрю Хьюм, опираясь на то, что его телесные углы при вершинах малы и это делает его похожим на колючего ежа или ехидну[3].
На основании анализа научной литературы Бранко Грюнбаум в статье «Может ли каждая плоскость многогранника иметь много сторон?» («Can Every Face of a Polyhedron Have Many Sides?») отмечает, что существует по крайней мере три различных метода рассмотрения многогранников. В случае ехиднаэдра это:
Как простая, видимая поверхность многогранника, внешняя форма ехиднаэдра состоит из 180 треугольных граней, которые образуют 270 рёбер, которые, в свою очередь, встречаются в 92 вершинах[5].
Все вершины ехиднаэдра лежат на поверхности трёх концентрических сфер. Внутренняя группа из 20 вершин образует вершины правильного додекаэдра; следующий слой из 12 вершин образует вершины правильного икосаэдра; и наружный слой из 60 вершин образует вершины усечённого икосаэдра[6].
Внутренняя | Средняя | Внешняя | Все три |
---|---|---|---|
20 вершин | 12 вершин | 60 вершин | 92 вершины |
![]() Додекаэдр |
![]() Икосаэдр |
![]() Усечённый икосаэдр |
![]() Ехиднаэдр |
Завершающая звёздчатая форма икосаэдра также может быть рассмотрена как самопересекающийся звёздчатый многогранник, имеющий 20 граней, соответствующих 20 граням икосаэдра. Каждая грань является неправильным звёздчатым многоугольником (или эннеаграммой)[7]. Каждые три грани образуют одну вершину, поэтому ехиднаэдр имеет 20 × 9 ÷ 3 = 60 вершин (этот внешний слой вершин и образует кончики «колючки») и 20 × 9 ÷ 2 = 90 рёбер (каждое ребро звёздчатого многогранника включает 2 из 180 видимых рёбер многогранника).
Эта звёздчатая форма многогранника образуется путём присоединения к икосаэдру всех отсеков, получаемых при продлении граней икосаэдра бесконечными плоскостями[8]. Таким образом, создается новый многогранник, ограниченный этими плоскостями как гранями, а пересечениями этих плоскостей являются рёбра. В книге «Пятьдесят девять икосаэдров» перечислены созвездия икосаэдра (включая ехиднаэдр) в соответствии с набором правил, выдвинутым Джеффри Миллером[1].
Ехиднаэдр принадлежит к звёздчатым многогранникам, которые впервые в научной литературе были описаны в 1619 году в трактате Harmonices Mundi Иоганом Кеплером. Кеплер дал математическое обоснование свойств двух типов правильных звёздчатых многогранников: малый звёздчатый додекаэдр и большой звёздчатый додекаэдр[11]. Гораздо позже — в 1809 году — Луи Пуансо заново открыл многогранники Кеплера, а также открыл ещё два звёздчатых многогранника: большой додекаэдр и большой икосаэдр, которые теперь называют телами Кеплера — Пуансо[12]. А в 1812 году Огюстен Коши доказал, что существует только 4 вида правильных звёздчатых многогранников[7][11].
Впервые ехиднаэдр был описан в 1900 году Максом Брюкнером в классической работе о многогранниках, озаглавленной «Многоугольники и многогранники», где помимо него были описаны ещё 9 звёздчатых форм икосаэдра[13]. С тех пор ехиднаэдр стал появляться в работах других математиков, причём он не имел единого обозначения. В 1924 году Альберт Виллер опубликовал список 20 звёздчатых форм (22, включая копии), и в том числе ехиднаэдр[14]. Наиболее систематическое и полное исследование звёздчатых многогранников провели Гарольд Коксетер совместно с Патриком дю Валем, Флейзером и Джоном Петри в 1938 году в книге Пятьдесят девять икосаэдров, где они применили правила ограничения, установленные Дж. Миллером. Коксетер доказал, что существует всего 59 звёздчатых форм икосаэдра, из которых 32 обладают полной, а 27 неполной икосаэдральной симметрией. Ехиднаэдр занимает восьмое место в книге[1]. В труде Магнуса Веннинджера, изданной в 1974 году Модели многогранников, ехиднаэдр включён как 17-я модель икосаэдра с индексом W42[2].
Современное название последней звёздчатой формы икосаэдра дал Эндрю Хьюм в 1995 году в своей базе данных Netlib[en] как echidnahedron[15] (ехидна, или колючий муравьед, небольшое млекопитающее, покрытое жёсткими волосами и шипами, сворачивается в клубок, чтобы защититься).
База данных Netlib охватывает все регулярные многогранники[en], архимедовы тела, ряд призм и антипризм, все многогранники Джонсона
(выпуклые многогранники, у которых каждая грань — правильный многоугольник) и некоторые странные многогранники, включая ехиднаэдр (моё название, на самом деле это завершающая форма икосаэдра).
Оригинальный текст (англ.)"It (Netlib) covers all the regular polyhedra, archimedean solids, a number of prisms and antiprisms, and all the Johnson polyhedra (all convex polyhedra with regular polygonal faces) and some odd solids including the echidnahedron (my name; its actually the final stellation of the icosahedron)".— [3]
![]() |
ехиднаэдр в Викисловаре |
---|
Икосаэдр (0)
Выкопанный додекаэдр (30)
Большой икосаэдр (45)
Ехиднаэдр (58)
Эта статья входит в число хороших статей русскоязычного раздела Википедии. |